¹³C-CP-MAS NMR Spectroscopic Study of the Reaction Products of Osmocene with Lewis Acids

Masanobu Watanabe and Hirotoshi Sano*
Department of Chemistry, Faculty of Science, Tokyo Metropolitan University,
Fukasawa, Setagaya-ku, Tokyo 158
(Received December 16, 1989)

The adducts of osmocene derivatives with Lewis acids were studied by means of ¹³C-CP-NMR spectroscopy and other physicochemical techniques. The large low-field shifts found through ¹³C-CP-MAS NMR and ¹H NMR spectroscopy and the organotin(IV) species found in the ¹¹⁹Sn-Mössbauer spectroscopic data suggest the presence of direct chemical bonds between the osmium atoms and the Lewis acids in the adducts.

It is well-known that [2]ferrocenophane and ruthenocene derivatives react with appropriate Lewis acids such as HgCl2, SnCl4, and I2, giving diamagnetic stable adducts with a direct chemical bond between the central metal atom in the metallocene (Fe, Ru) and the Lewis acid, based on the results of ⁵⁷Fe- and ¹¹⁹Sn-Mössbauer and ¹³C-CP-MAS NMR spectroscopic studies.¹⁻⁶⁾ Osmocene was first prepared more than 30 years ago by the reaction of osmium tetrachloride and a large excess amount of sodium cyclopentadienide in THF.⁷⁾ However, its chemical properties have been investigated less because of the lack of a high-yield synthetic route of osmocene. Osmocene is expected to react with Lewis acids, giving more stable adducts than [2]ferrocenophane and ruthenocene, because osmocene has a smaller steric hindrance in donating e2g-electrons (5d) than do [2]ferrocenophane and ruthenocene. However, few studies have been reported on the osmocene-Lewis acid adducts. The present studies were designed to find a high-yield synthetic route of osmocene and to provide information about the structure of some osmocene-Lewis acids adducts (HgCl₂, SnCl₄, I₂, Br₂ etc.) by means of ¹³C-CP-MAS NMR, ¹H NMR, ¹¹⁹Sn-Mössbauer spectroscopy and other physicochemical measurements.

Experimental

Materials: In the present study, osmocene was first prepared in high yield by mixing osmium trichloride and cyclopentadiene with zinc dust in ethanol under conditions similar to those used for ruthenocene.8) Freshly distilled cyclopentadiene (100 cm3) and zinc dust (5 g) were added to a solution of hydrated OsCl₃ (5.0 g, 0.015 mol) in ethanol (200 cm^3) . The mixture was stirred for 10 h at room temperature and refluxed for 1 h. The solution was extracted with hexane mixed with benzene, washed with water, dried over MgSO4 and separated by column chromatography on alumina. Hexane was used to elute dicyclopentadiene and a mixed solvent with hexane and benzene (1:1) to elute osmocene, which was obtained as pale-yellow precipitates. Osmocene was purified by recrystallization from hexane mixed with benzene (3.5 g, 0.011 mol; yield, 73%). ¹H NMR (CDCl₃) δ =4.71 and (CD₃CN) δ =5.52 (lit(CCl₄)⁹⁾ δ =4.57). ¹³C NMR (CDCl₃) δ =63.6 and (CD₃CN) δ =63.4 (lit(C_6D_6)9) $\delta=63.9$. Infrared spectrum data(KBr) 3083.5, 1399.5, 1096.6, 997.3, 988.6, 876.7, 830.4, 821.7, and 429.2 cm⁻¹, (lit¹⁰) 3108, 1400, 1098, 998, 989, 831, and 823 cm⁻¹). Found: C, 37.54; H, 3.22%. Calcd for $C_{10}H_{10}Os:C$, 37.49; H, 3.15%.

Adducts of HgCl₂ and SnCl₄ with osmocene were prepared by mixing a large excess amount of HgCl2 and SnCl4 with osmocene in an ether and hexane solution, respectively. Paleyellow diamagnetic precipitates were filtered, washed with ether and dried in vacuo. Found: C, 13.98; H, 1.35%. Calcd for C₁₀H₁₀OsHg₂Cl₄: C, 13.91; H, 1.17%. Found: C, 18.93; H, 1.82%. Calcd for C₁₀H₁₀OsSn_{1.5}Cl₆H₂O: C, 19.28; H, 1.94%. [OsCp₂]₂Hg(BF₄)₂ and [RuCp₂]₂Hg(BF₄)₂ adducts were prepared by the method described previously.¹¹⁾ Found: C, 23.68; H, 2.01%. Calcd for C₂₀H₂₀Os₂HgB₂F₈: C, 23.66; H 1.99%. Found: C, 28.83; H, 2.45%. Calcd for C₂₀H₂₀Ru₂HgB₂-F₈: C, 28.71; H, 2.41%. Adducts of AgBF₄ with osmocene and ruthenocene were prepared under the same conditions as those used for their HgCl2 adducts. Diamagnetic white precipitates were immediately formed. Found: C, 17.01; H, Calcd for C₁₀H₁₀OsAg₂B₂F₈: C 16.99; H, 1.42%. Found: C, 23.62; H, 2.31%. Calcd for C₁₀H₂₀RuAg_{1.5}B_{1.5}F₆: C, 22.95; H, 1.93%. An adduct of Pd(BF₄)₂ with osmocene was prepared by mixing a large excess amount of Pd(BF₄)₂-(CH₃CN)₄ with osmocene in acetonitrile. The solution was stirred for 1 h at room temperature and refluxed for 3 h and cooled. To the solution, a small amount of ethyl ether was added; yellow crystals were formed. Found: N, 4.63; C, 24.16; H, 2.42%. Calcd for $C_{10}H_{10}OsPd(BF_4)_2(CH_3CN)_2$: N, 4.10; C, 24.64; H, 2.36%. The reaction products of iodine with osmocene were prepared by mixing iodine and osmocene in dry CCl₄. Black diamagnetic precipitates were filtered. The products were well soluble in acetonitrile. The well-formed needle crystals were obtained by recrystallization from the solution. Found: C, 14.61; H, 1.18%. Calcd for C₁₀H₁₀OsI₄: C, 14.49; H, 1.21%. Reaction products of bromine with osmocene and ruthenocene were prepared under the same conditions used for the I2 adduct of osmocene. Diamagnetic yellow-green precipitates were also formed. Found:C, 18.53; H, 1.56%. Calcd for C₁₀H₁₀OsBr₄:C, 18.76; H, 1.57%. Found: C, 22.20; H, 1.89%. Calcd for C₁₀H₁₀RuBr₄: C, 21.80; H, 1.83%.

[RuthenoceniumCl] $^+PF_6^-$ salt was prepared by a previously reported method. 12 Found: C, 23.88; H, 2.04%. Calcd for C₁₀H₁₀RuClPF₆; C, 23.98; H, 2.01%. [Osmocenium Cl] $^+PF_6^-$ salt was prepared in a condition similar to that used for [ruthenoceniumCl] $^+PF_6^-$ salt. Found: C, 23.88; H, 2.04%. Calcd for C₁₀H₁₀OsClPF₆; C, 23,98; H, 2.01%. [OsmoceniumBr] $^+PF_6^-$ and [ruthenoceniumBr] $^+PF_6^-$ salts

were prepared by a method similar to that used for the [ruthenoceniumCl] $^+PF_6^-$ salt, except for the use of FeBr₃ and HBr. Found: C, 22.19; H, 1.82%. Calcd for $C_{10}H_{10}OsBrPF_6$; C, 22.02; H, 1.85%. Found: C, 26.33; H, 2.14%. Calcd for $C_{10}H_{10}RuBrPF_6$; C, 26.33; H, 2.21%.

Osmocenium⁺PF₆⁻ salt was prepared by a previously reported method.¹³⁾ Found: C, 26.58; H, 2.33%. Calcd for $C_{10}H_{10}RuPF_6$; C, 25.81; H, 2.17%.

Measurements: 119 Sn-Mössbauer spectra were measured against a Ca 119 SnO $_3$ source. The velocity calibration was by determining the resonance line of an 57 Fe-enriched metalliciron absorber aginst a 57 Co(Rh) source. The isomer shift (I.S.) for 119 Sn was described with respect to a BaSnO $_3$ absorber. The experimental error of the I. S. value was estimated to be within ± 0.02 mm s $^{-1}$.

The 13 C-CP-MAS NMR spectra were obtained at a frequency of 50.18 MHz using a JEOL FX-200 Fourier Transform NMR Spectrometer. Four thousand data points were collected by following a spin-locking cross-polarization sequence. The 13 C frequency spread was 20 kHz. Magicangle sample spinning rates of 3 to 3.5 kHz were achieved by using Kel-F rotors. The chemical shifts (δ) were measured with respect to external adamantane and then converted to the shifts from TMS. The 1 H and 13 C NMR spectra were measured in solution with the same spectrometer at 199.56 and 50.18 MHz, respectively, using TMS as a standard.

Cyclic voltammograms were obtained by the same method as in the case of a previous report. ²⁾ A working electrode of platinum button and an Ag/AgCl reference electrode were connected via a salt bridge of CH₃CN containing (0.1 mol dm⁻³) [(C₄H₉)₄N]ClO₄. The scanning rate was 200 mV s⁻¹. Ir spectra were obtained using a JASCO FT/IR-5MP spectrometer at a resolution of 2 cm⁻¹ by 128 scans.

Results and Discussion

Osmocene-SnCl₄ Adduct. Most ferrocene derivatives react with SnCl₄ merely giving paramagnetic ferrocenium salts,⁵⁾ while [2]ferrocenophane, ruthenocene and osmocene react with a large excess amount of SnCl₄, giving diamagnetic adducts. [2]Ferrocenophane- and ruthenocene-SnCl₄ adducts, however, are so unstable that the red-orange and yellow color of the adducts gradually changes into green-yellow upon standing at room temperature for a few hours or

several days in air after preparation, respectively.^{14–16)} The pale-yellow osmocene–SnCl₄ adduct is much more stable than the [2]ferrocenophane– and ruthenocene–SnCl₄ adducts on standing for a long time, showing no color change.

The ¹¹⁹Sn-Mössbauer parameters of the osmocene-SnCl₄ adduct and related compounds are listed in Table 1 and typical ¹¹⁹Sn-Mössbauer spectra of the adducts are shown in Fig. 1. Two kinds of chemical shifts of the tin(IV) species (I. S, 0.50 and 2.13 mm s⁻¹ at 78 K, as shown in Fig. 1-a) are observed in the spectra of the osmocene–SnCl₄ adduct. The component with a higher I. S value is ascribed to tin(IV) in [Cp₂Os-SnCl₂-OsCp₂]²⁺ species and the other one to an ionic SnCl₅⁻ species, based on the results of the

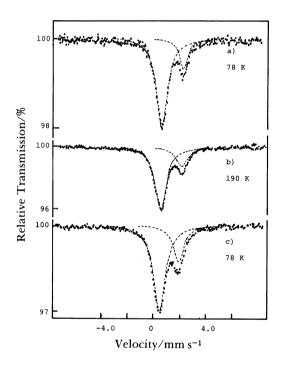


Fig. 1. ¹¹⁹Sn-Mössbauer spectra of osmocene-1.5SnCl₄(H₂O) (a,b) and ruthenocene-1.5SnCl₄ adducts (c), at indicated temperatures.

Table 1. 119Sn-Mössbauer Parameters of Osmocene-Tin Cloride Adduct and Related Compounds

Compound	Temperature/K	$I.S./mm s^{-1}$	Area ratio/%
Osmocene–1.5SnCl ₄ (H ₂ O)	78	0.50	0.75
		2.13	0.25
	140	0.52	0.79
		2.18	0.21
	190	0.53	0.80
		2.16	0.20
Ruthenocene-1.5SnCl ₄	78	0.56	0.72
		2.08	0.28
[2]Ferrocenophane-1.5SnCl ₄ (H ₂ O)	4.2	0.54	0.68
		2.11	0.32
	78	0.54	0.78
		2.14	0.22

studies of similar adducts of ruthenocene with $SnCl_4$ (0.56 and 2.08 mm s⁻¹ at 78 K, as shown in Fig. 1-c) and [2]ferrocenophane with $SnCl_4$ (0.54 and 2.14 mm s⁻¹ at 78 K).⁵⁾

Figure 2 shows the FT-IR spectra of osmocene (a) and its SnCl₄ adduct (b). The sharp singlet assigned to an antisymmetric C-C stretching mode of the cyclopentadienyl rings¹⁰⁾ is observed at 1399.5 cm⁻¹ in osmocene. It has been reported that the C-C stretching

Fig. 2. IR spectra of osmocene (a), osmocene–1.5SnCl₄(H₂O) (b), and (osmoceniumBr)⁺Br₃⁻ salt (c).

mode is split when the cyclopentadienyl rings are tilited by the bond formation between the Lewis acids and the central metal atoms of metallocene; i. e., Ru-Hg, Ru-I and Ru-Hg. 11,14,17,18) Therefore, the splitting of the band (ν ; 1426.5 and 1401.4 cm⁻¹ and $\Delta\nu$; 25.1 cm⁻¹, as shown in Fig. 2-b and Table 2) can be used for an indication of the bond formation between the Sn and Os atoms in the SnCl₄ adduct of osmocene.

Although osmocene is well-soluble and stable in most organic solvents, some of the Lewis acid adducts of osmocene are less soluble and unstable in solvents, as in the cases of the adducts of ruthenocene and [2]ferrocenophane.^{14–16)} Applications of ¹³C-CP-MAS NMR spectroscopy to the reaction products of osmocene have made it possible to obtain a high-resolution ¹³C NMR spectrum, even in the solid state. Figure 3 shows the ¹³C-CP-MAS NMR spectra of the osmocene (a) and its SnCl₄ adduct (b). Their ¹³C chemical shift values are listed in Table 3. The chemical shift ($\delta_{\rm C}$) values of the cyclopentadienyl ring carbon in osmocene was found to be 67.4 ppm, which is smaller than the value of ferrocene (69.8 ppm) and ruthenocene (73.2 ppm).

The large low-field shift found for the $SnCl_4$ adduct $(\Delta\delta_C; 15.5 \text{ ppm})$ compared with the chemical shift value of osmocene is very similar to the value of the ruthenocene– $SnCl_4$ adduct (15.9 ppm), 2 suggesting that the effect of $SnCl_4$ on the Os atoms in osmocene is similar to that on the Ru atoms in ruthenocene. By analogy to the structure of the ruthenocene- $SnCl_4$ adduct, 14 it may be reasonable to conclude that the osmocene– $SnCl_4$ adducts can be expressed as $[Cp_2Os-SnCl_2-OsCp_2]^{2+}$ $(SnCl_5^-)_2(H_2O)_2$, based on the results of $^{119}Sn-M$ össbauer, $^{13}C-CP-MAS$ NMR, and IR spectroscopic studies as well as elemental analysis.

Figure 4 shows the ¹H NMR spectra of osmocene (a),

Table 2. Comparison of the Infrared Spectra Assigned as Antisymmetric C-C Stretching Mode of Osmocene or Ruthenocene and Their Reaction Products with Lewis Acids

Compound	ν/cm^{-1}	$\Delta \nu/\mathrm{cm}^{-1}$	
Osmocene	1399.5		
Osmocene-2AgBF ₄	1399.5	_	
Osmocene-2HgCl ₂	1400.4, 1417.0	16.6	
$(Osmocene)_2-Hg(BF_4)_2$	1404.3, 1417.0	12.7	
Osmocene-1.5SnCl ₄ (H ₂ O)	1401.4, 1426.5	25.1	
(OsmoceniumI)+I ₃ -	1400.4, 1431.3	30.9	
(OsmoceniumBr)+Br ₃ -	1402.4, 1436.1	33.7	
(OsmoceniumCl)+PF ₆ -	1407.2, 1441.0	33.8	
(OsmoceniumBr)+PF ₆ -	1408.2, 1440.5	32.3	
(Osmocenium ⁺) ₂ (PF ₆ ⁻) ₂	1407.2, 1429.4	22.2	
Ruthenocene	1405.3	_	
Ruthenocene-1.5AgBF4	1406.2	_	
Ruthenocene-2HgCl ₂	1405.3, 147.2, 1416.8, 1421.7	16.4	
Ruthenocene-Hg(BF ₄) ₂	1407.2, 1421.7	14.5	
Ruthenocene-1.5SnCl ₄	1531.0, 1406.0	25.0	
(RuthenoceniumI)+I ₃ -	1403.3, 1436.1	32.8	
(RuthenoceniumBr)+Br ₃ -	1405.3, 1441.0	35.7	
(RuthenoceniumCl)+PF ₆ -	1411.1, 1446.7	35.6	
(RuthenoceniumBr)+PF ₆ -	1411.1, 1445.0	33.9	

Table 3. ¹³C and ¹H Chemical Shifts of Osmocene and Ruthenocene and Related Compounds in the Solid State and in a Solution, Respectively

Compound	¹³ C Chemical shift		¹ H Chemical shift	
	δc/ppm	Δδ _c /ppm	δ _H /ppm	Δδ _H /ppm
Osmocene	67.4	apin-	5.52	with
Osmocene-2AgBF ₄	67.5	0.1	5.58	0.06
Osmocene-Pd(BF ₄) ₂ (CH ₃ CN) ₂	75.4	8.0	6.59	1.07
Osmocene-2HgCl ₂	76.1	8.7	6.42	0.90
(Osmocene)2-Hg(BF4)2	74.3	6.9	6.58	1.06
Osmocene-1.5SnCl ₄ (H ₂ O)	82.9	15.5	6.68	1.16
(OsmoceniumI)+I ₃ -	88.2	20.8	6.78	1.26
(OsmoceniumBr)+Br ₃ -	90.3	22.9	6.70	1.18
(OsmoceniumCl)+PF ₆ -	90.5	23.1	6.65	1.13
(OsmoceniumBr)+PF ₆ -	89.2	21.8	6.69	1.17
(Osmocenium+) ₂ (PF ₆ -) ₂	80.4	13.0	6.53	1.01
Ruthenocene ^{a)}	73.2		5.37	-
Ruthenocene-1.5AgBF ₄	74.0	0.8	5.38	0.01
Ruthenocene-2HgCl ₂ ^{a)}	81.2	8.0	6.21	0.84
Ruthenocene-Hg(BF ₄) ₂	79.7	6.5	6.38	1.01
Ruthenocene-1.5SnCl ₄ a)	89.1	15.9	5.35	0.02
(RuthenoceniumI)+I ₃ -a)	93.4	20.2	6.87	1.50
(RuthenoceniumBr)+Br ₃ -	96.9	23.7	6.84	1.47
(RuthenoceniumCl)+PF ₆ -	97.1	23.9	6.79	1.42
(RuthenoceniumBr)+PF ₆ -	95.3	22.1	6.79	1.42

a) Chemical shift values are cited from Ref. 2.

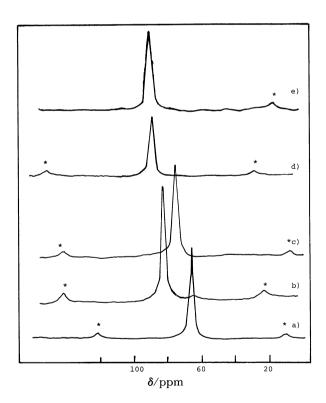


Fig. 3. ¹³C-CP-MAS NMR spectra of the osmocene (a), osmocene–1.5SnCl₄(H₂O) (b), osmocene–2HgCl₂ (c), (osmoceniumI)⁺I₃⁻ (d), and (osmoceniumCl)⁺PF₆⁻ (e). The sample spinning side band (SSB) is represented by * in the Figure.

its SnCl₄ adduct (b—e), ruthenocene (f), and its SnCl₄ adduct (g) all dissolved in acetonitrile. Although no peaks are observed in the ¹H- and ¹³C NMR spectra of

[2]ferrocenophane-SnX4 (X; Cl, Br) adducts dissolved in acetonitrile (because [2]ferocenophane is oxidized by SnX₄ giving paramagnetic [2]ferrocenophanium cations in acetonitrile), a sharp line is observed for SnCl₄ adducts of ruthenocene and osmocene. negligible low-field shift found in the ruthenocene-SnCl₄ adduct ($\Delta \delta_{\rm H}$; 0.02 ppm) suggests a rapid dissociation of the adduct into ruthenocene and SnCl4. However, a large low-field shift ($\Delta \delta_H$; 1.16 ppm) is observede for the osmocene-SnCl4 adduct, although a new peak assigned to osmocene grows with a several hours in acetontrile, as shown in Fig. 4 (c-e). These facts indicate that the Os-Sn bond in the osmocene-SnCl₄ adduct is more stable than the Fe-Sn and Ru-Sn bonds in the [2]ferrocenophane and ruthenocene-SnCl₄ adducts, respectively, even in acetonitrile. The stability of the Os-Sn bond may be ascribed to the greater softness of osmium atoms in osmocene.

Osmocene $HgCl_2$ and $Hg(BF_4)_2$ adducts. Osmocene reacts with a large excess amount of $HgCl_2$ in ether, giving a pale-yellow diamagnetic stable adduct, expressed as $Cp_2Os-2HgCl_2$. As in the case of the $SnCl_4$ adduct of osmocene, splitting of the 1400 cm^{-1} region is also observed for the $HgCl_2$ adduct in the IR spectrum, although the splitting value of the $HgCl_2$ adduct ($\Delta\delta$; 16.6 cm^{-1}) is not as large as that of the $SnCl_4$ adduct ($\Delta\delta$; 25.1 cm^{-1}).

Figure 3 shows ¹³C-CP-MAS NMR spectra of the osmocene-2HgCl₂ (c) adduct. A higher ¹³C chemical shift value ($\Delta\delta_c$; 8.7 ppm) is found for the HgCl₂ adduct and the $\Delta\delta_c$ value well corresponds to the values of the HgCl₂ adducts with ferrocene ($\Delta\delta_c$; 8.9 ppm)⁶⁾ and ruthenocene ($\Delta\delta_c$; 8.0 ppm)²⁾ which

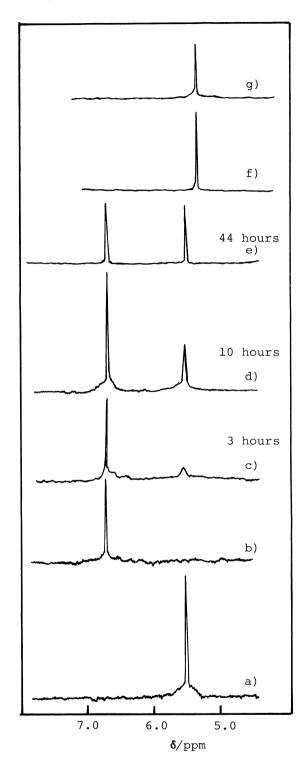


Fig. 4. ¹H NMR spectra of osmocene (a), osmocene-1.5SnCl₄(H₂O) adduct (b—e), ruthenocene (f), and ruthenocene-1.5SnCl₄ (g) adduct at the indicated time after the preparation of acetonitrile solution.

have an Fe-Hg and a Ru-Hg bond, respectively.

Similar large low-field shifts ($\Delta\delta_H$; 0.90 ppm) are also observed for the ¹H NMR spectra of the osmocene–HgCl₂ adduct in CD₃CN, as shown in Table 3. These facts clearly suggest the presence of an Os–Hg

bond in a solid, or even in acetonitrile. The smaller values of $\Delta\delta_{\rm C}$ and $\Delta\delta_{\rm H}$ than the values of the SnCl₄ adduct (15.5 and 1.16 ppm, respectively), suggest that osmium atoms interact more weekly with HgCl₂ than with SnCl₄. Actually, the osmocene–HgCl₂ adduct is not as stable as the SnCl₄ adduct. After standing in air for a few days after preparation of the osmocene–HgCl₂ adduct, the pale-yellow color of the adduct gradually changes into yellow-green. The Cp-ring proton signals of the yellow-green HgCl₂ adduct appear at δ =6.42 and 6.80 in acetonitrile; former value well corresponds to the pale-yellow HgCl₂ adduct, but the latter to an osmocenium salt.

Osmocene and ruthenocene react with Hg(CN)2 and HBF4 in ethanol, giving yellow-colored adducts; determined as [osmocene]₂Hg(BF₄)₂ and [ruthenocene] $_2$ Hg(BF $_4$) $_2$, $^{11)}$ respectively. Splittings in the 1400 cm⁻¹ region are observed for both the mercury(II) adducts of osmocene ($\Delta \nu$; 12.7 cm⁻¹) and ruthenocene $(\Delta \nu; 14.5 \text{ cm}^{-1})$, as shown in Table 2. The large $\Delta \delta_{\rm C}$ value of the [osmocene]₂Hg(BF₄)₂ adducts is found to be 6.9 ppm, although the $\Delta \nu$ and $\Delta \delta_C$ values of [osmocene]₂Hg(BF₄)₂ adduct are a little smaller than the values of the HgCl₂ adduct (16.6 cm⁻¹ and 8.7 ppm, respectively). Similar results are found for the ruthenocen-2HgCl₂ (16.4 cm⁻¹ and 8.0 ppm respectively) and [ruthenocene] $_2$ Hg(BF₄) $_2$ adducts (14.5 cm⁻¹ and 6.5 ppm, respectively). The structure of the latter adduct is determined as [Cp₂Ru-Hg-RuCp₂]²⁺(BF₄-)₂ by Hendrickson et al., on the basis of the IR and Ramanspectroscopic studies. 11) Considering of the smaller $\Delta \nu$ and $\Delta\delta_{\rm C}$ values of the $[{\rm Cp_2Os}]_2{\rm Hg}({\rm BF_4})_2$ adduct than those values of the osmocene-2HgCl₂, it may be reasonable to conclude that the [osmocene]2Hg(BF4)2 adduct is expressed as $[Cp_2Os\text{-Hg-}OsCp_2]^{2+}(BF_4^-)_2$ in a solid.

Osmocene Pd(BF₄)₂ and AgBF₄ Adducts. Osmocene reacts with Pd(BF₄)₂(CH₃CN)₄ in acetonitrile, giving pale yellow diamagnetic precipitates expressed as osmocene-Pd(BF₄)₂(CH₃CN)₂, whereas ruthenocene does not react with Pd(BF₄)₂(CH₃CN)₄. As in the case of the SnCl₄ and HgCl₂ adducts, higher 13 C ($\Delta\delta_{C}$; 8.0 ppm) and ¹H chemical shift values ($\Delta \delta_{\rm H}$; 1.07 ppm) are observed. The $\Delta\delta_C$ values of Pd(BF₄)₂ adduct is, however, a little smaller than the value of the HgCl₂ adduct ($\Delta\delta_{C}$; 8.7 ppm), suggesting the Os-Pd bond is not as stable as the Os-Hg bond. Actually, the color of the Pd(BF₄)₂ adduct changes into brown after being allowed to stand in air for a several hours. The Cpring proton signals of the pale-yellow Pb(BF₄)₂ adduct appear at δ =6.59 and 5.50 in acetonitrile for several minutes after the preparation of the solution, suggesting a rapid dissociation of the adduct in acetonitrile, because the latter value well corresponds to that of osmocene itself (5.52 ppm).

Osmocene and ruthenocene react with AgBF₄ in ether, giving diamagnetic precipitates determined as

osmocene-2AgBF4 and ruthenocene-1.5AgBF4, respectively, based on elemental analysis. Although the colors of the HgCl₂ and SnCl₄ adducts of osmocene and ruthenocene are vellow or pale-vellow, respectively, the color of the AgBF4 adducts of osmocene and ruthenocene is white. Much smaller low-field shifts $(\Delta \delta_{\rm C}, 0.1 \text{ and } \Delta \delta_{\rm H}, 0.06 \text{ ppm})$ and no splitting for the 1400 cm⁻¹ mode are observed in the osmocene-2AgBF4 adduct in the 13C-CP-MAS, 1H NMR, and IR spectroscopic studies, respectively. Such smaller low-field shifts are also found for the ruthenocene-1.5AgBF₄ adduct ($\Delta\delta_{\rm C}$, 0.8 and $\Delta\delta_{\rm H}$, 0.01 ppm). Therefore, it can be concluded that reaction products with AgBF4 and metallocene are neither mixtures nor adducts with a metal-metal (Os-Ag or Ru-Ag) bond, but molecular complexes with a weak interaction between the metallocene and AgBF4.

Reaction Products of I_2 , Br_2 , HX, and FeX_3 (X; CI and Br) with Osmocene. Studies of the cyclic voltammography of osmocene show two irreversible one-electron oxidation peaks ($E_{\rm OX}$; 0.50 and 0.85 V; as illustrated in Fig. 5-a), whereas ruthenocene gives one irreversible two-electrons oxidation peak ($E_{\rm ox}$; 0.72 V). The potential of the first oxidation step is similar to that of ferrocene ($E_{\rm ox}$, 0.44 V), suggesting that osmocene is oxidized more easily than ruthenocene.

Osmocene is oxidized by a large excess amount of I₂ and Br₂ in CCl₄, giving diamagnetic precipitates expressed as osmocene–2I₂ and osmocene–2Br₂, respectively. The reaction products with halogen are more stable than any other products of osmocene in a solid, or even in acetonitrile, without showing any change of

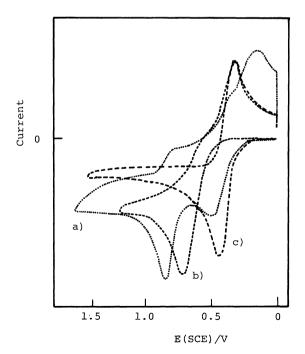


Fig. 5. Cyclic voltammograms of osmocene (a), ferrocene (c), and ruthenocene (b) in acetonitrile solution. (Sweep rate; 200 mV s⁻¹).

color. The larger splittings of the $1400~\rm cm^{-1}$ band $(\Delta\nu, 30.9~\rm and~33.7~\rm cm^{-1}$ for the I_2 and Br_2 products, respectively, as shown in Table 2 and Fig. 2-c) are observed for both products than for the osmocene–HgCl₂ and –SnCl₄ adducts.

The ¹³C-CP-MAS NMR parameters of the products are listed in Table 3 and a typical spectrum of the I₂ product is shown in Fig. 3-d. Much larger $\Delta\delta_{\rm C}$ and $\Delta\delta_{\rm H}$ values (20.8 and 1.26 ppm for the I₂ product and 22.9 and 1.18 ppm for the Br₂ product) are observed in the halogen products than the values found in the HgCl2 and SnCl₄ adducts. This suggests that the effect of the halogen on the osmium atoms in osmocene is stronger than that of the other Lewis acids (SnCl₄ and HgCl₂). Similar large $\Delta\delta_{\rm C}$ and $\Delta\delta_{\rm H}$ values are also observed for the ruthenocene-halogen products (20.2 and 1.5 ppm for the I2 product and 23.7 and 1.47 ppm for the Br2 product, respectively),2 which have structures expressed as [Cp₂Ru(IV)-X]+X₃-(X; I and Br) on the basis of X-ray analysis.¹⁷⁾ By analogy to the ruthenocenehalogen products, the structure of the osmocenehalogen products may be expressed as [Cp2Os(IV)- $X]+X_3-(X; I \text{ and } Br).$

A benzene solution of osmocene reacts with a large excess amount of HX and FeX3 (X; Cl and Br) in an aqueous solution of NH₄PF₆, giving diamagnetic brown precipitates determined as Cp2OsXPF6. The largest $\Delta \nu$ (33.8 cm⁻¹) and $\Delta \delta_{\rm C}$ values (23.1 ppm) in all the products of osmocene and a large $\Delta \delta_{\rm H}$ (1.13 ppm) value are observed for the Cp2OsClPF6 product. Similar large $\Delta \nu$, $\Delta \delta_{\rm C}$, and $\Delta \delta_{\rm H}$ values (32.3 cm⁻¹, 21.8 ppm, and 1.17 ppm, respectively) are also observed for the Cp2OsBrPF6 products. These values correspond to the values of [Cp₂Os(IV)-Br]+Br₃- salt $(33.7 \text{ cm}^{-1}, 22.9 \text{ ppm}, \text{ and } 1.18 \text{ ppm}, \text{ respectively}).$ This fact clearly suggests the presence of a bond between the Os(IV) and halogen atoms (Cl, Br), both in the Cp₂OsXPF₆ products; it can be concluded that the reaction products are expressed as [Cp2Os(IV)-X⁻]⁺PF₆⁻ (X; Cl and Br). The increasing values of $\Delta \nu$ and $\Delta\delta_{\rm C}$ in the products of osmocene with halogen suggest that the interaction between the osmocene and the halogen increases in the order I-<Br-<Cl-.

Raction Products of Ce(NO₃)₂(NH₄)₆ with Osmocene. Though osmocene is oxidized Ce(NO₃)₆-(NH₄)₂ in an aqueous solution of NH₄PF₆, giving a green osmocenium salt analyzed as Cp₂OsPF₆, ruthenocene is not oxidized by the same treatment, since ruthenocene is oxidized less easily than osmocene. Droege et al. determined the crystal structure of the PF₆- salt of osmocenium using X-ray analysis, concluding that two osmocenium cations are joined by an antiferromagnetic Os(III)-Os(III) bond in the salt; [Cp₂Os-OsCp₂]²⁺(PF₆-)₂. ¹³⁾ A splitting in the 1400 cm⁻¹ region is found to be 22.2 cm⁻¹. This value is much smaller than that of the halogen products of osmocene (30—34 cm⁻¹) and a little smaller than the

SnCl₄ adduct (25.1 cm⁻¹). In the ¹³C-CP-MAS NMR and ¹H NMR spectroscopy of the salt, large low-field shifts ($\Delta\delta_{\rm C}$; 13.0 and $\Delta\delta_{\rm H}$; 1.01 ppm) are observed; the values of low-field shift of the dimer cation, however, are much smaller than the values of the I2 and Br2 products, suggesting that the Os(III)-Os(III) bond is not as stable as the Os(IV)-I- and Os(IV)-Br- bonds. Actually, the PF₆⁻ salt is not stable in acetonitrile; i.e., the green color of the PF₆⁻ salt in acetonitrile changes to brown upon standing at room temperature for a several minutes, whereas the I2 and Br2 products are stable and show no change in color and NMR spectra. Droege et al. have reported that the dimer cations react with acetonitrile, giving pale-yellow and red-brown precipitates which are determined as [Cp2(C5H4)2- Os_2]²⁺(PF₆⁻)₂ and [Cp₂OsNCCH₃]²⁺(PF₆⁻)₂, respectively, based on the results of X-ray analysis and elemental analysis data.13)

Conclusion

Figure 6 shows the correlation between the $\Delta\delta_C$ and $\Delta\nu$ values of osmocene– and ruthenocene–Lewis acid products. A remarkable dependence of the $\Delta\delta_C$ value on the $\Delta\nu$ value is observed for both the products. The large $\Delta\delta_C$ and $\Delta\nu$ values found in the osmocene–Lewis acids products indicate that the enhanced interaction between the metal in metallocene (Os, Ru) and the

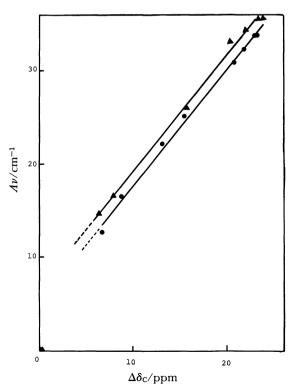


Fig. 6. The correlation between the $\Delta \nu$ and $\Delta \delta_C$ values for osmocene– (\bullet) and ruthenocene–Lewis acid products (\triangle).

Lewis acids (AgBF₄≪Hg(BF₄)₂<HgCl₂<SnCl₄<I₂<Br₂) should result in a decrease in the electron density around the Cp-ring carbon and an increase in the distortion of the molecular structure of metallocene unit

The $\Delta\delta_{\rm C}$ values of osmocene–Lewis acids products agree with the values of corresponding ruthenocene–Lewis acids products and the $\Delta\nu$ values of osmocene–Lewis acid products are a little smaller (2—3 cm⁻¹) than the values of the corresponding ruthenocene–Lewis acid products. The results show that the two five-membered rings of the osmocene-Lewis acid products are less titled than those of the ruthenocene–Lewis acid products, giving more stable osmocene products with Lewis acids compared with ruthenocene products. Further studies must be conducted in order to provide direct evidence for proving the conclusion, by using X-ray analysis of osmocene–Lewis acid products.

References

- 1) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., 56, 3291 (1983).
- 2) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., 61, 827 (1988).
- 3) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Chem. Lett., 1987, 1669.
- 4) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Chem. Lett., 1987, 1981.
- 5) M. Watanabe, I. Motoyama, and H. Sano, *Bull. Chem. Soc. Jpn.*, **69**, 2109 (1986).
- 6) M. Watanabe, Y. Masuda, I. Motoyama, and H. Sano, Bull. Chem. Soc. Jpn., 61, 3479 (1988).
- 7) E. O. Fisher, M. D. Rausch, and H. Grubert, *Chem. Ind.* (London), **1958**, 765.
- 8) P. Pertici, G. Vitulli, M. Paci, and L. Porri, J. Chem. Soc., Dalton Trans., 1980, 1911.
- 9) A. N. Nesmeyanov, E. I. Fedin, L. A. Fedorov, and P. V. Petrovskii, J. Struct. Chem. (Engl. Trans.), 13, 964 (1973).
- 10) E. O. Fisher and H. Grubert, *Chem. Ber.*, **92**, 2302 (1959).
- 11) D. N. Hendrickson, Y. S. Sone, W. H. Morrison, Jr., and H. B. Gray, *Inorg. Chem.*, 11, 808 (1972); L. I. Dnisivich, N. V. Zakurin, A. A. Bezryukova, and S. P. Gubin, *J. Organomet. Chem.*, 81, 207 (1974).
- 12) T. P. Smith, K. S. Kwan, H. Taube, A. Bins, and S. Cohen, *Inorg. Chem.*, **23**, 1943 (1984).
- 13) M. W. Droege, W. D. Herman, and H. Taube, *Inorg. Chem.*, **26**, 1309 (1987).
- 14) K. R. Mann, W. H. Morrison, Jr., and D. N. Hendrickson, *Inorg. Chem.*, **13**, 1180 (1974).
- 15) M. Watanabe, I. Motoyama, and H. Sano, *Chem. Lett.*, **1986**, 1699.
- 16) M. Watanabe, H. Ichikawa, I. Motoyama, and H. Sano, Chem. Lett., 1983, 1009.
- 17) Y. S. Sohn, A. W. Schlueter, D. N. Hendrickson, and H. B. Gray, *Inorg. Chem.*, **13**, 301 (1974).
- 18) W. H. Morrison, Jr. and D. N. Hendrickson, *Inorg. Chem.*, **11**, 2912 (1972).